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Appendix A

Moment dynamics of x

Based on standard stochastic formulation of chemical kinetics [1, 2], the model describing

x contains the following stochastic events

Protein production: x
kicipj7−−−→ x+ j, (A.1a)

Cell stage evolution: ci
λici7−−→ ci − 1, ci+1

λici7−−→ ci+1 + 1, (A.1b)

Cell division: x
λncn7−−−→ x+, cn

λncn7−−−→ cn − 1, c1
λncn7−−−→ c1 + 1, (A.1c)

where the probability of having a burst of j molecules is given by pj. Whenever an event

occurs, the states of the system change based on the stochiometries given in (A.1). On

top of the arrows we showed the event propensity function ψ(x, c) = ψ(x, c1, c2, . . . , cn),

which determines how often reactions occur, i.e., the probability that an event occurs in

the next infinitesimal time interval (t, t+ dt] is ψ(x, c)dt. Time derivative of the expected

value of any function ϕ(x, c) = ϕ(x, c1, c2, . . . , cn) for this system can be written as [3]

d〈ϕ(x, c)〉
dt

=

〈 ∑
Events

∆ϕ(x, c)× ψ(x, c)

〉
, (A.2)

where ∆ϕ(x, c) = ∆ϕ(x, c1, c2, . . . , cn) is the change in ϕ(x, c) when an event occurs.

Choosing ϕ to be x and ci, i = {1, 2, . . . , n} results in the equation (3.1) in the main

article.
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Appendix B

Moment dynamics of y

The model describing x and y includes the stochastic events

Protein production: x
kicipj7−−−→ x+ j, (B.1a)

Cell stage evolution: ci
λici7−−→ ci − 1, ci+1

λici7−−→ ci+1 + 1, (B.1b)

Cell division: x
λncn7−−−→ x+, y

λncn7−−−→ y+, cn
λncn7−−−→ cn − 1, c1

λncn7−−−→ c1 + 1, (B.1c)

and the deterministic production of y

ẏ =

(
n∑
i=1

kici

)
〈B〉. (B.2)

Time derivative of the expected value of any function ϕ(x, y, c) = ϕ(x, y, c1, c2, . . . , cn) for

this system can be written as [3]

d〈ϕ(x, y, c)〉
dt

=

〈 ∑
Events

∆ϕ(x, y, c)× ψ(x, y, c)

〉
+

〈(
n∑
i=1

kici

)
∂ϕ(x, y, c)

∂z
〈B〉

〉
,

(B.3)

where the first term in the right-hand side is contributed from stochastic events and the

second one is contributed from (B.2). The propensity function of the events is given by

ψ(x, y, c) = ψ(x, y, c1, c2, . . . , cn), and ∆ϕ(x, y, c) = ∆ϕ(x, y, c1, c2, . . . , cn) is the change

in ϕ(x, y, c) when an event occurs. The mean dynamics of y can be written by choosing

ϕ to be y

d〈y〉
dt

=

(
n∑
i=1

ki〈ci〉

)
〈B〉 − λn

2
〈ycn〉. (B.4)
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Dynamics of 〈y〉 is not closed and depends to moments 〈ycn〉, hence in order to have a

closed set of equations we add new moments dynamics by selecting ϕ to be yci

d〈yc1〉
dt

= k1〈B〉〈c1〉+
λn
2
〈ycn〉 − λ1〈yc1〉, (B.5a)

d〈yci〉
dt

= ki〈B〉〈ci〉 − λi〈yci〉+ λi−1〈yci−1〉, j ∈ {2, . . . , n}. (B.5b)

Dynamics of 〈y〉 and 〈yci〉, j ∈ {1, . . . , n} are the same as dynamics of 〈x〉 and 〈xci〉, j ∈

{1, . . . , n} presented in (3.1b) and (3.3) in the main text, hence 〈x〉 = 〈y〉 and 〈xci〉 =

〈yci〉.

Further, dynamics of 〈xy〉 can be written as

d〈xy〉
dt

=

(
n∑
i=1

ki (〈xci〉+ 〈yci〉)

)
〈B〉 − λn

4
〈xycn〉. (B.6)

In order to have a closed set of equations we add dynamics of 〈xyci〉

d〈xyc1〉
dt

= k1 (〈xc1〉+ 〈yc1〉) 〈B〉+
λn
4
〈xycn〉 − λ1〈xyc1〉, (B.7a)

d〈xyci〉
dt

= ki (〈xci〉+ 〈yci〉) 〈B〉 − λi〈xyci〉+ λi−1〈xyci−1〉, i = {2, . . . , i} . (B.7b)

By having a closed set of equations related to xy, in the next step we add dynamics of

〈y2〉 and 〈y2ci〉

d〈y2〉
dt

= 2

(
n∑
i=1

ki〈yci〉

)
〈B〉 − λn

4
〈y2cn〉, (B.8a)

d〈y2c1〉
dt

= 2k1〈yc1〉〈B〉+
λn
4

〈
y2cn

〉
− λ1〈y2c1〉, (B.8b)

d〈y2ci〉
dt

= 2ki〈yci〉〈B〉 − λi〈y2ci〉+ λi−1〈y2ci−1〉, i = {2, . . . , i} . (B.8c)
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Using the fact that 〈x〉 = 〈y〉 and 〈xci〉 = 〈yci〉, equations (B.6), (B.7), and (B.8) in

steady-state results in 〈y2〉 = 〈xy〉 and 〈y2ci〉 = 〈xyci〉.



Appendix C

Intrinsic noise obtained from two-color assay

In this section we show that the results obtained here can be derived from two-color assay.

Consider two identical proteins x1 and x2 which their dynamics are exactly the same as

protein x in the main article. The model describing x1 and x2 includes the stochastic

events

Protein x1 production: x1
kicipj17−−−−→ x1 + j1, (C.1a)

Protein x2 production: x2
kicipj27−−−−→ x2 + j2, (C.1b)

Cell stage evolution: ci
λici7−−→ ci − 1, ci+1

λici7−−→ ci+1 + 1, (C.1c)

Cell division: x1
λncn7−−−→ x1+, x2

λncn7−−−→ x2+, cn
λncn7−−−→ cn − 1, c1

λncn7−−−→ c1 + 1.

(C.1d)

Note that the mean burst sizes of x1 and x2 are equal to the mean burst size of x. For

this model the intrinsic noise can be quantified as

η =
〈x21〉 − 〈x1x2〉
〈x1〉2

(C.2)

[4].

Since dynamics of x1 and x2 are exactly the same as x, we have 〈x1〉 = 〈x2〉 = 〈x〉

and 〈x21〉 = 〈x22〉 = 〈x2〉. Further in Appendix B we show that 〈xci〉 = 〈yci〉 hence

〈x1ci〉 = 〈x2ci〉 = 〈yci〉. In the next we show that 〈x1x2〉 = 〈y2〉. Time derivative of the

expected value of any function ϕ(x1, x2, c) = ϕ(x1, x2, c1, c2, . . . , cn) for this system can
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be written as [3]

d〈ϕ(x1, x2, c)〉
dt

=

〈 ∑
Events

∆ϕ(x1, x2, c)× ψ(x1, x2, c)

〉
, (C.3)

where the propensity function of the events is given by ψ(x1, x2, c) = ψ(x1, x2, c1, c2, . . . , cn),

and ∆ϕ(x1, x2, c) = ∆ϕ(x1, x2, c1, c2, . . . , cn) is the change in ϕ(x1, x2, c) when an event

occurs. The mean dynamics of x1x2 can be written by choosing ϕ to be x1x2

d〈x1x2〉
dt

=

(
n∑
i=1

ki〈x1ci〉

)
〈B〉+

(
n∑
i=1

ki〈x2ci〉

)
〈B〉 − λn

4
〈x1x2cn〉. (C.4a)

In order to have a closed set of equations, we add new moments dynamics by selecting

ϕ to be x1x2ci

d〈x1x2c1〉
dt

= k1〈x1c1〉〈B〉+ k1〈x2c1〉〈B〉+
λn
4
〈x1x2cn〉 − λ1〈x1x2c1〉, (C.5a)

d〈x1x2ci〉
dt

= ki〈x1ci〉〈B〉+ ki〈x2ci〉〈B〉 − λi〈x1x2ci〉+ λi−1〈x1x2ci−1〉, i = {2, . . . , i} .

(C.5b)

Using the fact that 〈x1ci〉 = 〈x1ci〉 = 〈yci〉, equations (C.4) and (C.5) in steady-state are

exactly the same as (B.8) in steady-state. Hence 〈y2〉 = 〈x1x2〉 and 〈y2ci〉 = 〈x1x2ci〉. It

results in

η =
〈x2〉
〈x〉

2 −
〈y2〉
〈y〉

2 =
〈x21〉 − 〈x1x2〉
〈x1〉2

. (C.6)



Appendix D

Moments dynamics of z

The random variable z is governed via

z(t) 7→ z(t) +B, (D.1a)

ż = −

(
n∑
i=1

kici

)
〈B〉. (D.1b)

Further in the time of division, z+ is defined as

〈z+(ts)|z(ts)〉 =
z(ts)

2
,

〈
z2+(ts)− 〈z+(ts)〉2

∣∣∣∣z(ts)

〉
=
αx(ts)

4
. (D.2)

Hence the model by taking into account z contains the following stochastic events

Protein production: x
kicipj7−−−→ x+ j, z

kicipj7−−−→ z + j, (D.3a)

Cell stage evolution: ci
λici7−−→ ci − 1, ci+1

λici7−−→ ci+1 + 1, (D.3b)

Cell division: x
λncn7−−−→ x+, z

λncn7−−−→ z+, cn
λncn7−−−→ cn − 1, c1

λncn7−−−→ c1 + 1, (D.3c)

and deterministic dynamics of z given in (D.1b). Time derivative of the expected value

of any function ϕ(x, z, c) = ϕ(x, z, c1, c2, . . . , cn) for this system can be written as [3]

d〈ϕ(x, z, c)〉
dt

=

〈 ∑
Events

∆ϕ(x, z, c)× ψ(x, z, c)

〉
−

〈(
n∑
i=1

kici

)
∂ϕ(x, z, c)

∂z
〈B〉

〉
,

(D.4)

where the first term in the right-hand side is contributed from stochastic events and the
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second one is contributed from (D.1b). The propensity function of the events is given by

ψ(x, z, c) = ψ(x, z, c1, c2, . . . , cn), and ∆ϕ(x, z, c) = ∆ϕ(x, z, c1, c2, . . . , cn) is the change

in ϕ(x, z, c) when an event occurs.

By choosing ϕ to be z2 and z2ci, i = {1, . . . , i} we have the following moment dynamics

d〈z2〉
dt

=

(
n∑
i=1

ki〈ci〉

)
〈B2〉+

1

4
αλn〈xcn〉 −

3

4
λn〈z2cn〉, (D.5a)

d〈z2c1〉
dt

= k1〈B2〉〈c1〉+
1

4
αλn 〈xcn〉+

λn
4

〈
z2cn

〉
− λ1〈z2c1〉, (D.5b)

d〈z2ci〉
dt

= ki〈B2〉〈ci〉 − λi〈z2ci〉+ λi−1〈z2c(i−1)〉, i = {2, . . . , i} . (D.5c)

Note that just one of the binary states ci can be 1 at a time, thus 〈z2〉 =
∑n

i=1 〈z2ci〉. In

order to calculate the terms 〈z2ci〉 we need to express the term 〈z2cn〉 as the first step.

This term can be calculated by analyzing equation (D.5a) in steady-state

〈z2cn〉 =
4

3λn

∑n
j=1

kj
λj∑n

j=1
1
λj

〈B2〉+
2α

3λn

∑n
j=1

kj
λj∑n

j=1
1
λj

〈B〉. (D.6)

By using a recursive process we calculate moments 〈z2ci〉: we calculate 〈z2c1〉 by substi-

tuting equation (D.6) in equation (D.5b). Then we use the definition of 〈z2c1〉 to calculate

〈z2c2〉 from equation (D.5c) and so on

〈z2ci〉 =
1

3λi

∑n
j=1

kj
λj∑n

j=1 λj
〈B2〉+

1

λi

∑i
j=1

kj
λj∑n

j=1
1
λj

〈B2〉+
2α

3λi

∑n
j=1

kj
λj∑n

j=1
1
λj

〈B〉. (D.7)

Summing up all the term in equation (D.7) results in 〈z2〉

〈z2〉 =
1

3
∑n

j=1
1
λj

n∑
i=1

n∑
j=1

kj
λiλj
〈B2〉+ 1∑n

j=1
1
λj

n∑
i=1

i∑
j=1

kj
λiλj
〈B2〉+ 4α

3
∑n

j=1
1
λj

n∑
i=1

n∑
j=1

kj
λiλj
〈B〉.

(D.8)
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Finally, protein fluctuatios level can be written as

η =
〈z2〉
〈x〉

2 =

(
1

3
+

2

3

1

1 + β

)
〈B2〉
〈B〉

1

〈x〉
+

2α

3

β

1 + β

1

〈x〉
, (D.9)

where

β =

∑n
i=1

∑n
j=1

kj
λiλj∑n

i=1

∑i
j=1

kj
λiλj

. (D.10)



Appendix E

Optimal value of β

From (D.9) it is clear that minimum production noise occurs when β is maximum, and

minimum value of partitioning noise happens when β is minimum. β can be written as

β =

∑n
i=1

∑n
j=1

kj
λiλj∑n

i=1

∑i
j=1

kj
λiλj

=
k1
λ1
a1 + k2

λ2
a1 + . . .+ kn

λn
a1

k1
λ1
a1 + k2

λ2
a2 + . . .+ kn

λn
an
, (E.1)

where

a1 =
1

λ1
+

1

λ2
+ . . .+

1

λn
, a2 =

1

λ2
+ . . .+

1

λn
, an =

1

λn
. (E.2)

Note that

a1 > a2 > . . . > an ⇒ β ≤ a1
an
, (E.3)

where equality happens when all kis are zero except kn. Using the same methodology one

can see that minimum of β happens when all the rates are zero except k1. The minimum

value of β is one.
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Appendix F

Cell-to-cell variability in synchronized cells

Statistical moments conditioned on the cell cycle stage Ci can be obtained using

〈x|ci〉 =
〈xci〉
〈ci〉

, 〈x2|ci〉 =
〈x2ci〉
〈ci〉

. (F.1)

In order to calculate stochastic variation in protein levels in synchronized cells we need

to calculate 〈x2ci〉

d〈x2c1〉
dt

= 2k1〈B〉〈xc1〉+ k1〈B2〉〈c1〉+
1

4
αλn 〈xcn〉+

λn
4

〈
x2cn

〉
− λ1〈x2c1〉, (F.2a)

d〈x2ci〉
dt

= 2ki〈B〉〈xci〉+ ki〈B2〉〈ci〉 − λi〈x2ci〉+ λi−1〈x2c(i−1)〉, i = {2, . . . , i} . (F.2b)

In order to calculate 〈x2cn〉 we introduce the moment dynamics of 〈x2〉

d〈x2〉
dt

= 2

(
n∑
i=1

ki〈xci〉

)
〈B〉+

(
n∑
i=1

ki〈ci〉

)
〈B2〉+

1

4
αλn〈xcn〉 −

3

4
λn〈x2cn〉, (F.3)

hence in steady-state

〈x2cn〉 =
8

3λn

(∑n
j=1

kj
λj

)2
+
∑n

i=1
ki
λi

∑i
j=1

kj
λj∑n

j=1
1
λj

〈B〉+
4

3λn

∑n
j=1

kj
λj∑n

j=1
1
λj

〈B2〉+
2α

3λn

∑n
j=1

kj
λj∑n

j=1
1
λj

〈B〉.

(F.4)

12



13

By using a similar process used in the previous section we calculate moments 〈x2ci〉

〈x2ci〉 =
2

3λi

(∑n
j=1

kj
λj

)2
∑n

j=1
1
λj

〈B〉+
2

3λi

∑n
i=1

ki
λi

∑i
j=1

kj
λj∑n

j=1
1
λj

〈B〉+
2

λi

∑i
s=1

ks
λs

∑s
j=1

kj
λj∑n

j=1
1
λj

〈B〉

+
2

λi

∑i
j=1

kj
λj

∑n
i=1

ki
λi∑n

j=1
1
λj

〈B〉+
1

3λi

∑n
j=1

kj
λj∑n

j=1
1
λj

〈B2〉+
1

λi

∑i
j=1

kj
λj∑n

j=1
1
λj

〈B2〉+
2α

3λi

∑n
j=1

kj
λj∑n

j=1
1
λj

〈B〉.

(F.5)

By having 〈xci〉 and 〈x2ci〉 from (3.5) and (F.5), we can calculate the mean and the noise

in synchronized cells. Using (F.1) yields the following conditional mean

〈x|ci = 1〉 =

(
n∑
j=1

kj
λj

+
i∑

j=1

kj
λj

)
〈B〉. (F.6)

Further, the protein variability level given that cells are in stage Ci is given by

η|ci=1 =

2

3

n∑
j=1

(
1

λj

)∑n
i=1

ki
λi

∑i
j=1

kj
λj

+ 3
∑i

s=1
ks
λs

∑s
j=1

kj
λj

+
(∑i

j=1
kj
λj

)2
(3 + βc)βc(∑i

j=1
kj
λj

)2
(1 + βc)2

− 1


︸ ︷︷ ︸

Cell cycle variations

+

(
1

3
+

2

3

1

1 + βc

)
〈B2〉
〈B〉

1

〈x|ci〉︸ ︷︷ ︸
Burst synthesis variability

+
2α

3

βc
1 + βc

1

〈x|ci〉︸ ︷︷ ︸
Partitioning errors

,

(F.7)

where

βc =

∑n
j=1

kj
λj∑i

j=1
kj
λj

. (F.8)



Appendix G

Incorporating cell-cycle times correlations, promoter

switching, and mRNA dynamics in the model

In the main article we assumed independent cell-cycle times, and instantaneous tran-

scriptional and translational bursts. Here we relax these assumptions and study how the

noise in the protein level is changed. In order to include promoter switching and mRNA

dynamics we consider that during the cell cycle, a gene becomes active (ON) and after

an exponentially distributed time interval it becomes inactive (OFF) with a rate koff .

The gene spends another exponentially distributed time interval in OFF state before it

becomes active again with a rate kon. The mRNA molecules are produced from active

states of gene with rate km, and they degrade with a rate γm per mRNA molecule. Finally,

stable proteins are translated from mRNA with rate kx. Let g(t) be indicator function of

gene, g(t) = 1 (g(t) = 0) means gene is ON (OFF), then the model contains the following

stochastic events during the cell cycle

Gene activation: g(t)
kon(1−g(t))7−−−−−−→ g(t) + 1, (G.1a)

Gene deactivation: g(t)
koffg(t)7−−−−→ g(t)− 1, (G.1b)

mRNA production: m(t)
kmg(t)7−−−−→ m(t) + 1, (G.1c)

mRNA degradation: m(t)
γmm(t)7−−−−→ m(t)− 1, (G.1d)

Protein production: x(t)
kxm(t)7−−−−→ x(t) + 1, (G.1e)
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where m(t) and p(t) denote mRNA and protein population levels at time t, respectively.

At the end of cell cycle, division occurs and mRNA and protein molecules are partitioned

in daughter cells binomially. After each division we select a new cell-cycle time which

is correlated to previous cell-cycle times. We add correlation to the new cell-cycle time

Ti, i ∈ N, by assuming that it is connected to previous cell-cycle time through an Auto

Regressive (AR) process

Ti = T0 + φTi−1 + ηi, (G.2)

where ηis are independent and identical normally distributed random variables ηi ∼

N (0, ση), T0 is a constant, and |φ| < 1. For this model the mean and variance of cell-cycle

time is

〈Ti〉 =
T0

1− φ
, i ∈ N, V ar(Ti) =

σ2
η

1− φ2
. (G.3)

Further the cross correlation between two cell cycles which are i cycles apart is φi.

In the case of transcriptional bursting, burst frequency is gene activation rate, i.e.,

kon in this model. Hence here we assumed that kon is a function of cell-cycle time. We

investigate two scenarios 1) constant gene activation rate 2) synthesis at the end of cell

cycle. For constant kon, gene switches between ON and OFF states through the cell cycle.

In the synthesis at the end of cell cycle, we assume that for 75% of Ti gene is OFF and

kon = 0. In the last 25% of cell cycle time switching occurs and kon is non zero. Further

transcriptional bursting is the limit of large koff and small kon, i.e., genes is OFF most of

the time. Here we consider that gene is active for 20% of the cell-cycle time. Further we

analyzed the system in both fast and slow switching switching rates.

We use another model in which protein production is modeled deterministic through-
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Noise buffering in protein levels for different switching rates 

Slow switching 

(𝑘𝑜𝑓𝑓 = 2.5 ℎ𝑟−1) 

Fast switching 

(𝑘𝑜𝑓𝑓 = 15 ℎ𝑟−1) 

Positive correlation in 

cell-cycle times 

Negative correlation in 

cell-cycle times 

Figure S1: Protein synthesis at the end of cell cycle reduces noise contributed
from expression in the limit of slow switching rates and presence of correlated
cell cycle times. Noise ratio less than 1 indicates syntheis at the end reduces the noise in
comparison with constant production. Noise ratio is less than one for different switching
rates and correlation values. For this plot we have assumed both negative correlation of
−0.25 [5] and positive correlation of 0.25 between successive cell-cycle times, Mean cell-
cycle time is 2 hours and noise in cell-cycle times is CV 2

T = 0.05. The mRNA production
rate is km = 50hr−1 and mRNA molecules degrade with rate γm = 5hr−1. Protein
molecules are translated from mRNA with a rate kp = 25hr−1. Gene activation rate kon
is adjusted to keep mean of protein equal to 150 molecules for all cases. The error bars
obtained via bootstrapping by using 20, 000 Monte Carlo simulations.

out the cell cycle

dg(t)

dt
= kon − (kon + koff )g(t),

dm(t)

dt
= kmg(t)− γmm(t),

dp(t)

dt
= kpm(t). (G.4)

In the time of division mRNA and proteins are partitioned based on a beta distribution

which is the continuous counter part of binomial distribution. The difference between
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noise levels of these two models give the noise from stochastic expression.

We numerically investigate the models described in (G.1) and (G.4) for correlated

cell-cycle times in (G.2). Figure S1 shows the simulation results obtained from 20, 000

Monte Carlo simulations for different switching rates and correlation values. From equa-

tion (4.7) in the main article we know that synthesis at the end of cell cycle reduces noise

in comparison with constant synthesis. However equation (4.7) obtained for the bursty

expression model which is an approximation in the limit of fast switching. Moreover in

order to derive (4.7), cell cycle time are assumed to be independent. Simulation results

reveal that in the presence of correlated cell-cycle times and by taking into account dy-

namics of gene and mRNA, synthesis at the end still reduces the noise contribution from

stochastic synthesis. This reduction happens even when gene is active for relatively long

time, switching is slow, dynamics of mRNA is included and cell-cycle times are correlated.

In summary our analysis reveals that perturbing the assumptions made in this paper to

obtain analytic solutions are not changing the fact that synthesis at the end of cell cycle

leads to buffering noise contributed from stochastic expression.
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